一种粘连谷物图像分割及杂质识别算法开发  被引量:9

Development of Splitting and Identification Algorithm of Touching Kernels in Digital Images

在线阅读下载全文

作  者:闫磊[1] 刘芷宁[1] 林剑辉[1] 钱桦[1] 刘晋浩[1] 

机构地区:[1]北京林业大学工学院,北京100083

出  处:《吉林农业科学》2012年第4期72-76,共5页Journal of Jilin Agricultural Sciences

基  金:北京林业大学青年科学基金项目(2010BLX10);北京市自然科学基金资助项目(6123035)

摘  要:本文提出了一种自动分割粘连谷物并识别杂质的算法。该算法首先使用基于形态学多尺度分解的分水岭算法对粘连颗粒进行分割,接着提取各个颗粒的形态特征和颜色特征,然后计算上述样本颗粒的特征值与完好谷物的特征值之间的马氏距离,并比较它们的马氏距离与设定的阈值,来识别混杂在谷物中的杂质。通过对5种谷粒(普通大米、粗米、糙米、普通大麦、糯麦)的实验,结果表明该算法取得了较好的分割与识别效果,为谷物质量分级的评定提供了一种快速有效地检测谷物产品杂质率的方法。An improved automatic method of separation and identification of touching kernels and foreign materials in digital images was proposed.At first,the image was filtered and converted into a binary image.Then the touching kernels were separated by using watershed algorithm based on morphological multiscale decomposition(MSD).Next,the morphological and color features from each segmented component and standard kernel were extracted for calculation of Mahalanobis distance between each segmented component’s features and those of standard kernels.Finally foreign materials were identified by comparing Mahalanobis distance with the given threshold.Five kinds of kernels(common rice,rough rice,brown rice,common barley and glutinous barley) were tested and the experimental results showed that the proposed algorithm could separate touching kernels effectively and identify foreign material correctly.

关 键 词:粘连谷物 杂质 形态学多尺度 分水岭 马氏距离 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象