基于高斯混合分布和区域竞争主动轮廓的医学目标分割  

Medical Object Extraction by Gaussian Mixture Model and Region Competition Active Contour Model

在线阅读下载全文

作  者:尚岩峰[1] 汪辉[1] 汪宁[1] 

机构地区:[1]中国科学院上海高等研究院,上海201203

出  处:《计算机科学》2012年第9期257-261,共5页Computer Science

基  金:国家02重大科技专项(2011ZX02505-002);上海市科委项目(10DZ1500600)资助

摘  要:提出了一种基于高斯混合分布和区域竞争主动轮廓的医学目标提取模型。这一模型,把主动轮廓的能量函数表示为像素属于目标或背景的子类的最大概率的区域积分,在水平集合框架下使能量函数最小化,得到在高斯子类区域间竞争演化的分割迭代方程。同时,附加的速度约束项使主动轮廓在越过目标边缘时速度降低,提高了分割的收敛性。通过大量肝脏CT图像的分割实验以及与几种经典模型和手工提取的比较,表明该模型在医学图像分割中具有较好的健壮性、准确性和灵活性均较好。This paper proposed a regional active contour model with an embedded classifier,based on a Gaussian mixture model fitted to the intensity distribution of the medical image.The difference between the maximum probability of the intensities belonging to the classes or subclasses of the object and those of the background is made as an energy term in the active contour model,and minimization of the whole energy function leads to a novel iterative equation.An additional speed controlling term slows down the evolution of the active contour when it approaches an edge,making it quickly convergent to the ideal object.The developed model has been applied to liver segmentation.Some comparisons are made between the geodesic active contour,C-V(active contour without edges),manual outline and our model.As the experiments show that our model is accurate,flexible and suited to extract objects surrounded by a complicated background.

关 键 词:医学图像 分割 高斯混合模型 主动轮廓 肝脏 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象