检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhi Yang Fang Fang Xuchu Weng
机构地区:[1]Key Laboratory of Behavioral Sciences,Institute of Psychology,Chinese Academy of Sciences,Beijing 100101,China [2]Center for Cognition and Brain Disorders,Hangzhou Normal University,Hangzhou 310015,China [3]Department of Psychology,Peking University,Beijing 100817,China
出 处:《Neuroscience Bulletin》2012年第4期399-408,共10页神经科学通报(英文版)
基 金:supported by grants from the National Natural Science Foundation of China (30900366,31070905)
摘 要:Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.
关 键 词:multivariate analysis FMRI pattern recognition computational biology
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222