检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北农林科技大学林学院,陕西杨凌712100
出 处:《北方园艺》2012年第18期92-95,共4页Northern Horticulture
基 金:国家林业局"948"资助项目(98-4-05)
摘 要:对我国42个美国黄松引种地的年均温、最热月均温、最冷月均温、极端最高温、极端最低温、≥10℃积温、无霜期、年均降雨量、年蒸发量、平均风速、年日照时数、平均海拔12个气候指标进行了主成分分析和聚类分析,划分为最适宜区、适宜区、次适宜区和不适宜区4种类型,并结合美国黄松的生长状况对2种方法区划的结果进行对比。结果表明:主成分-聚类分析法既可以对多变量数据进行合理地分类,又能对各类优劣程度做出综合评价,能充分反映适宜美国黄松生长的气候情况,与美国黄松实际生长情况比较后,验证了该方法是切实可行的。Principal component analysis and cluster analysis were used to study 12 climate indicators of Pinus ponderosa in 42 places in China, such as annual average temperature, temperature in the hottest and coldest month, extreme maximum and minimum temperature, ≥10°C accumulated temperature, frost-free period, average annual rainfall and evaporation, the average wind speed, the average wind speed and annual sunshine hours and average altitude. They were divided into 4 types, the most suitable area, suitable area, sub-suitable area and unsuitable area, and comparisons were made among two analytic methods combined with the actual growth of Pinus ponderosa. The results showed that the principal component-cluster analysis not only can classify multivariate data, but also is able to make a comprehensive evaluation; it correctly reflects the most suitable areas for Pinus ponderosa. After testing by the actual growth of Pinus ponderosa, we confirm the method was practicable.
分 类 号:S722.7[农业科学—林木遗传育种]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200