ML型迁移学习模糊系统  被引量:34

Mamdani-Larsen Type Transfer Learning Fuzzy System

在线阅读下载全文

作  者:蒋亦樟[1] 邓赵红[1] 王士同[1] 

机构地区:[1]江南大学数字媒体学院,无锡214122

出  处:《自动化学报》2012年第9期1393-1409,共17页Acta Automatica Sinica

基  金:国家自然科学基金(60903100;61170122);江苏省自然科学基金(BK2009067);中央高校基本科研业务费专项资金(JUSRP21128);江苏省信息融合软件工程技术研究开发中心开放基金项目(SR-2011-01)资助~~

摘  要:经典模糊系统构建方法训练时通常仅考虑单一的场景,其伴随的一个重要缺陷是:如当前场景重要信息缺失,则受训所得系统泛化能力较差.针对此问题,以Mamdani-Larsen(ML)型模糊系统为对象,探讨了具有迁移学习能力的模糊系统,即ML型迁移学习模糊系统.ML型迁移学习模糊系统不仅能充分利用当前场景的数据信息,而且能有效地利用历史知识来进行学习,具有通过迁移历史场景知识来弥补当前场景信息缺失的能力.具体地,基于经典的压缩集密度估计(Reduced setdensity estimator,RSDE)ML型模糊系统构建方法,通过引入迁移学习机制提出了一种基于密度估计的ML型迁移模糊系统构建方法.在模拟数据和真实数据上的实验研究亦验证了该迁移模糊系统在信息缺失场景下较之于传统模糊系统建模方法的更好适应性.The classical fuzzy system modeling methods only consider the single scene, which may bring up the following weakness: if the information of partial data is missing, the fuzzy systems constructed based on this dataset will have the weak generalization abilities for this scene. In order to overcome this shortcoming, by focusing on the Mamdani-Larsen type fuzzy system (ML-FS) model, the fuzzy system with the transfer learning abilities, i.e. ML-transfer fuzzy system is proposed. The ML-transfer fuzzy system will not only make full use of the data information in the learning procedure, but also effectively learn from the existing useful historical knowledge, such as parameters of the fuzzy system obtained from the dataset of historical scene, in order to make up the information lack in the current scene. Based on this idea, a specified ML-transfer fuzzy system (ML-TFS) based on reduced set density estimation (RSDE) technology is proposed by introducing transfer learning mechanism. It has been verified by experiments on simulation data and real data that the ML-transfer fuzzy system has a better adaptability than the traditional fuzzy modeling method in the scene with information missing.

关 键 词:迁移学习 信息缺失 压缩集密度估计 Mamdani—Larsen模糊系统 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象