检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁金涛[1] 李夕兵[1] 宫凤强[1] 王希然[1] 柳皎[1]
机构地区:[1]中南大学资源与安全工程学院,湖南长沙410083
出 处:《中国安全科学学报》2012年第7期109-115,共7页China Safety Science Journal
基 金:国家自然科学基金资助(50934006);国家重点基础研究发展计划("973")项目(2010CB732004)
摘 要:为有效地预防矿井突水事故,及早识别突水水源是关键工作之一。根据矿井各含水层水化学成分的差异性,选取7种水化学成分指标作为突水水源识别的样本变量。在此基础上,采用主成分分析(PCA)与Fisher判别分析相结合的方法建立突水水源判别模型。以新庄孜煤矿不同水层的水化学特征资料中的33个为学习样本,12个为预测样本,对该模型进行检验和应用,并与传统Fisher判别分析模型的结果进行比较。研究结果表明:利用PCA与Fisher突水水源判别模型能够有效地消除样本变量指标间的相互影响,使突水水源判别结果更加准确。It was held here that the early recognition of water bursting source was the key to water inrush prevention. Mass concentrations of seven water chemical components ( Ca^2+ , Mg^2+ , K^+ N^+ , HCO3^-, SO4^2-, Cl^- and the total hardness) were selected as the sample variables in water bursting source recognition, A prediction model of water inrush source was built by combining PCA with Fisher discriminant analysis. The model was tested and applicated in the different water layers of Xinzhuangzi coal mine with 33 training samples and 12 forecasting samples , and compared with the traditional Fisher discrimination model. The results show that prediction made by this model is more accurate than that by the traditional one.
关 键 词:FISHER判别分析 矿井突水 水源判别 主成分分析(PCA) 矿井水文地质
分 类 号:X924.4[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112