检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易剑[1] 谭树彬[1] 李维刚[1] 杜斌[1,2]
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819 [2]宝钢研究院自动化研究所,上海201900
出 处:《东北大学学报(自然科学版)》2012年第9期1235-1239,共5页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金和宝钢联合资助项目(50974145);上海市科委重点科研基金资助项目(09DZ1120900)
摘 要:针对连铸计划中的组中间包问题,建立了多旅行商问题(MTSP)模型,提出了一种结合启发式、k-opt邻域搜索和EDA进化的混合优化算法.该算法首先利用启发式规则确定虚拟炉次的个数,从而确定染色体编码长度,每个染色体代表一种中包组合方案,然后设计了基于概率矩阵模型的EDA进化算法对染色体进行全局寻优,并使用k-opt邻域搜索进行局部优化.EDA算法不需要设计如遗传算法(GA)那样的交叉算子,避免了交叉导致的编码非法性问题.通过对企业实际生产数据进行仿真计算,其结果表明了算法具有良好的优化性能和实用性.The combining tundish problem on continuous casting plan was described and the multiple traveling salesman problem (MTSP) model was constructed. A hybrid optimization algorithm composed of the heuristic method, the k-opt neighborhood search, and the estimation of distribution algorithms (EDA) was proposed to solve the model. First, a heuristic method was used to determine the counts of dummy furnace which were involved in chromosome code to fix on the code length. Each chromosome presented a scheme of combining tundish and then the probability matrix model of the EDA was designed to optimize chromosome globally. Moreover, the k-opt was used as local search strategy. Unlike genetic algorithm(GA), the EDA had no crossover operator, therefore the illegal code resulted from crossover operator was avoided. Simulation results on the real production data indicated that the proposed algorithm had fairly good performance and utility.
关 键 词:炉次计划 组中间包问题 多旅行商问题 k-opt邻域搜索 分布估计算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222