检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIANGChunyan ZHANG Xiang YANG Lin ZHANG Jianping YAN Yonghong
出 处:《Chinese Journal of Acoustics》2012年第4期489-498,共10页声学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(10925419,90920302, 61072124,11074275,11161140319);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA06030100)
摘 要:A feature extraction technique named perceptual MVDR-based cepstral coefficients (PMCCs) was introduced into speaker recognition. PMCCs are extracted and modeled using Gaussian Mixture Models (GMMs) for speaker recognition. In order to compensate for speaker and channel variability effects, joint factor analysis (JFA) is used. The experiments are carried out on the core conditions of NIST 2008 speaker recognition evaluation data. The experimental results show that the systems based on PMCCs can achieve comparable performance to those based on the conventional MFCCs. Besides, the fusion of the two kinds of systems can make significant performance improvement compared to the MFCCs system alone, reducing equal error rate (EER) by the factor between 7.6% and 30.5% as well as minimum detect cost function (minDCF) by the factor between 3.2% and 21.2% on different test sets. The results indicate that PMCCs can be effectively applied in speaker recognition and they are complementary with MFCCs to some extent.A feature extraction technique named perceptual MVDR-based cepstral coefficients (PMCCs) was introduced into speaker recognition. PMCCs are extracted and modeled using Gaussian Mixture Models (GMMs) for speaker recognition. In order to compensate for speaker and channel variability effects, joint factor analysis (JFA) is used. The experiments are carried out on the core conditions of NIST 2008 speaker recognition evaluation data. The experimental results show that the systems based on PMCCs can achieve comparable performance to those based on the conventional MFCCs. Besides, the fusion of the two kinds of systems can make significant performance improvement compared to the MFCCs system alone, reducing equal error rate (EER) by the factor between 7.6% and 30.5% as well as minimum detect cost function (minDCF) by the factor between 3.2% and 21.2% on different test sets. The results indicate that PMCCs can be effectively applied in speaker recognition and they are complementary with MFCCs to some extent.
分 类 号:TN912.34[电子电信—通信与信息系统] U666.7[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222