检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:SI Wei-jian LAN Xiao-yu ZOU Yan
机构地区:[1]College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China [2]No. 91404 Army, Qinhuangdao 066000, China
出 处:《The Journal of China Universities of Posts and Telecommunications》2012年第4期110-116,共7页中国邮电高校学报(英文版)
基 金:supported by the National Basic Research Program of China (61393010101-1)
摘 要:The performance of multiple signal classification (MUSIC) algorithm with regard to solving closely spaced direction of arrivals (DOAs) depends strongly upon the signal-to-noise ratio (SNR) and snapshots. In order to solve this problem, a method by reconstructing the spatial spectrum function with both noise subspace and signal subspace is presented in this paper. The key idea is to apply the full information contained in covariance matrix and change the projection weights of steering vector on the noise and signal subspace by their revised eigenvalues, respectively. Comparing with the MUSIC algorithm, it does not increase any computational complexity either, and remarkably, it has the advantages of simultaneously reducing noise and keeping the high-resolution ability under low SNR and small sample sized scenarios. Simulation and experiment results are included to demonstrate the superior performance of the proposed algorithm.The performance of multiple signal classification (MUSIC) algorithm with regard to solving closely spaced direction of arrivals (DOAs) depends strongly upon the signal-to-noise ratio (SNR) and snapshots. In order to solve this problem, a method by reconstructing the spatial spectrum function with both noise subspace and signal subspace is presented in this paper. The key idea is to apply the full information contained in covariance matrix and change the projection weights of steering vector on the noise and signal subspace by their revised eigenvalues, respectively. Comparing with the MUSIC algorithm, it does not increase any computational complexity either, and remarkably, it has the advantages of simultaneously reducing noise and keeping the high-resolution ability under low SNR and small sample sized scenarios. Simulation and experiment results are included to demonstrate the superior performance of the proposed algorithm.
关 键 词:direction &arrival (DOA) multiple signal classification low SNR RESOLUTION subspace projection
分 类 号:TN911.23[电子电信—通信与信息系统] O241.6[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43