检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽萍[1]
出 处:《工业建筑》2012年第9期107-109,161,共4页Industrial Construction
基 金:陕西省自然科学基础研究资助基金面上项目(S2001JC4069);陕西省教育厅自然科学类专项科研计划项目(12JK0919)
摘 要:分析小波概率神经网络(WPNN)与数据融合技术在预测单桩竖向承载力中的应用原理,建立基于小波概率神经网络和数据融合技术的预测模型。根据长期的工程实测资料,利用高层建筑物静载试验数据对模型进行检验,并选取典型的样本进行预测值的误差分析。结果表明,预测的结果与静载试验数据吻合较好,从而证实了WPNN预测方法具有较好的可靠性和工程应用价值。It was analyzed that the applied principles of wavelet probabilistic neural network(WPNN) and data fusion technique in the prediction of single pile vertical bearing capacity,and a prediction model based on WPNN and data fusion technique was set up.This model was examined by the static load test data of tall buildings,and according to the measured data of long-term projects.The error analysis of the predicted values was also carried out by selecting typical specimens,the results showed that the predicted data agreed well with those of the static load test,which verified the better reliability and applied value of WPNN prediction method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229