机构地区:[1]School of Energy Source and Power Engineering,Shandong University,Jinan 250061,China
出 处:《Journal of Hydrodynamics》2012年第4期628-634,共7页水动力学研究与进展B辑(英文版)
基 金:the National Key Basic ResearchProgram of China (973 Program, Grant No. 2011CB710702)
摘 要:TO develop an excellent heat transfer element under the vacuum condition, experiments about the heat transfer performance of horizontal tube bundles of different materials under various vacuum conditions were carried out, including the stainless steel tube, the brass tube, the Ni-based implanted steel tube and the ion implanted brass tube. The relative trends show that the condensation heat transfer coefficient and the overall heat transfer coefficient of bundles of four materials all increase with the vacuum degree, especially, those of the Ni-based implanted steel tube and the ion implanted brass tube. Under a high vacuum condition (0.07 MPa), the condensation heat transfer coefficient of the Ni-based implanted steel tube bundle is about 1.4 times of that of the stainless steel tube bundle, the condensation heat transfer coefficient of the ion implanted brass tube bundle is found to be about 1.3 times of that of the common brass tube bundle. Therefore, according to the condensation heat transfer characteristics studied under high vacuum conditions, it is believed that a dropwise condensation is partly achieved on the surface of these two implanted tube bundles, and the ion implantation is shown to be an effective method to achieve the dropwise condensation. Based on this study, it is believed that the Ni-based steel tube may replace the brass tube, which is more expensive as a heat transfer component.TO develop an excellent heat transfer element under the vacuum condition, experiments about the heat transfer performance of horizontal tube bundles of different materials under various vacuum conditions were carried out, including the stainless steel tube, the brass tube, the Ni-based implanted steel tube and the ion implanted brass tube. The relative trends show that the condensation heat transfer coefficient and the overall heat transfer coefficient of bundles of four materials all increase with the vacuum degree, especially, those of the Ni-based implanted steel tube and the ion implanted brass tube. Under a high vacuum condition (0.07 MPa), the condensation heat transfer coefficient of the Ni-based implanted steel tube bundle is about 1.4 times of that of the stainless steel tube bundle, the condensation heat transfer coefficient of the ion implanted brass tube bundle is found to be about 1.3 times of that of the common brass tube bundle. Therefore, according to the condensation heat transfer characteristics studied under high vacuum conditions, it is believed that a dropwise condensation is partly achieved on the surface of these two implanted tube bundles, and the ion implantation is shown to be an effective method to achieve the dropwise condensation. Based on this study, it is believed that the Ni-based steel tube may replace the brass tube, which is more expensive as a heat transfer component.
关 键 词:VACUUM heat transfer characteristics condensation heat transfer coefficient dropwise condensation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...