检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘博宁[1] 张建业[2] 张鹏[1] 王占磊[1]
机构地区:[1]空军工程大学工程学院,西安710038 [2]空军工程大学科研部,西安710051
出 处:《电子与信息学报》2012年第9期2200-2207,共8页Journal of Electronics & Information Technology
基 金:中国博士后科学基金(201150M1551)资助课题
摘 要:针对几种时间序列相似性度量方法存在的序列元素值依赖性,对序列信息挖掘不充分等问题,该文提出一种新的时间序列分段、近似表示和相似性度量方法。在对序列信息和规律充分挖掘的基础上,对时间序列进行分段并建立了各分段的精确拟合模型,用分段的拟合曲线在各时刻处曲率组成的曲率序列对原时间序列进行近似表示,给出了时间序列的曲率距离定义。最后,提出了基于曲率距离的时间序列相似性搜索算法。该方法充分挖掘了序列信息,对时间序列的主要形态特征进行了有效保留和识别,经实验验证了该方法的有效性、稳定性和准确性。In view of shortcomings of some methods for similarity measurement, like value dependent of series elements and insufficient mining of information in series, a new method for time series compartmentation approximation representation and similant is proposed in this paper. Based on sufficient mining of information and orderliness in series, the time series are divided into many sections and the curve fitting model of each section is established. Then, the time series are represented approximately with a sequence of the curvatures of each time in the sections, while the curvature distance is proposed. Finally, the similarity searching algorithms in time series based on curvature distance is proposed. It mines the information of the series sufficiently, retains and recognizes the major shape of the series effectively, experimental results prove the effectiveness, stability and accuracy of the method proposed in this paper.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.237.87