检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chun Gang ZHU Ren Hong WANG
机构地区:[1]School of Mathematical Sciences,Dalian University of Technology
出 处:《Acta Mathematica Sinica,English Series》2012年第10期1973-1980,共8页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant Nos. U0935004, 11071031 and 10801024);Fundamental Research Funds for the Central Universities (Grant Nos. DUT10ZD112, DUT11LK34);National Engineering Research Center of Digital Life, Guangzhou 510006, China
摘 要:Algebraic variety is the most important subject in classical algebraic geometry. As the zero set of multivariate splines, the piecewise algebraic variety is a kind generalization of the classical algebraic variety. This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.Algebraic variety is the most important subject in classical algebraic geometry. As the zero set of multivariate splines, the piecewise algebraic variety is a kind generalization of the classical algebraic variety. This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
关 键 词:Piecewise algebraic varieties multivariate splines PARTITIONS algebraic geometry
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62