检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩璐[1]
机构地区:[1]南京邮电大学,江苏南京210003
出 处:《计算机技术与发展》2012年第9期87-90,共4页Computer Technology and Development
基 金:江苏省研究生培养创新工程(CXLX11_0418)
摘 要:局部保持投影(locality preserving projection,LPP)和线性鉴别分析(linear discriminant analysis,LDA)是两种有效的一维特征提取方法,广泛应用于人脸识别领域。但采用一维特征提取方法时会存在列向量化时样本的结构信息被破坏和样本在提取特征时必须对协方差矩阵进行特征分解,对于高维小样本的问题很容易出现协方差矩阵奇异的问题。文中提出将二维局部保持投影(2DLPP)和二维线性鉴别分析(2DLDA)这两种方法在特征层进行融合并应用在人脸识别。基于人脸库AR上的实验表明,该方法比传统的LPP和LDA识别性能更高,因此可作为一种新的人脸识别方法。Locality preserving projections (LPP) and linear discriminant analysis (LDA) are two effective ID feature extraction methods, which have been widely applied to face recognition. However, such 1 D feature extraction methods always destroy the structure information in a face image when converting it into a vector. And since face images are high-dimensional, 1D methods suffer the singular problem ( small sample size problem ) when performing eigen-decomposition and inverse computation for the scatter matrices. In this paper,propose a novel feature fusion approach for face recognition, which fuses the features extracted by two-dimensional LPP ( 2DLPP) and two-dimensional LDA ( 2DLDA ). The experiment based on AR face database shows that this proposed method can perform better results than the traditional LPP and LDA methods.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33