机构地区:[1]School of Mines, China University of Mining & Technology, Xuzhou 221116, China [2]State Key Laboratory of Coal Resources & Mine Safety, Xuzhou 221008, China [3]China Yongcheng Coal and Electric Power Group Corporation Ltd., Yongcheng 476600, China
出 处:《International Journal of Mining Science and Technology》2012年第3期399-404,共6页矿业科学技术学报(英文版)
基 金:provided by the National Natural Science Foundation of China (No. 90510002);the Science and Technology Research of the Ministry of Education of China(No. 306008)
摘 要:A discrete elemental method was used to study the thickness of conglomerate layer in a full thick seam mining activities under the influence of the law, pointing out the thickness of the conglomerate at different seam mining, and during the destruction and instability of existing state of laws. At 21141 thick seam mining, the face toward the direction of separation between the thick layer of conglomerate rock and the next bit after reaching its maximum capacity due to pull from the bottom of the plastic zone, formed a stratified and hierarchical down collapse. The shape of caving area is a ''triangular block'', the length of the plastic zone and face advancement from the linear fit between the height of the plastic zone and the advancing face is a quadratic function of distance, while the top layer of thick gravel layer is the overall bending subsidence trend. Tilting the direction of the face, a thick gob of collapsed conglomerate layer is formed in the coal gob entity on both sides of the thick conglomerate at the top of the overall fracture morphology performance, thus forming a mutual extrusion of articulated block structure. The instability, separation and balance of the thick conglomerate layer in the hinged block stope stress leads to abnormal occurrence of rock burst induced by face as the major factor in the accident. This research reveals the form of stress distribution in the destroyed layer of the thick conglomerate rock, analyzes the stope law of coupling for the pressure burst behavior law for the mining work face, and the choice of preventive measures to provide a theoretical basis and implementation.A discrete elemental method was used to study the thickness of conglomerate layer in a full thick seam mining activities under the influence of the law, pointing out the thickness of the conglomerate at different seam mining, and during the destruction and instability of existing state of laws. At 21141 thick seam mining, the face toward the direction of separation between the thick layer of conglomerate rock and the next bit after reaching its maximum capacity due to pull from the bottom of the plastic zone, formed a stratified and hierarchical down collapse. The shape of caving area is a "triangular block", the length of the plastic zone and face advancement from the linear fit between the height of the plastic zone and the advancing face is a quadratic function of distance, while the top layer of thick gravel layer is the over- all bending subsidence trend. Tilting the direction of the face, a thick gob of collapsed conglomerate layer is formed in the coal gob entity on both sides of the thick conglomerate at the top of the overall fracture morphology performance, thus forming a mutual extrusion of articulated block structure. The instability, separation and balance of the thick conglomerate layer in the hinged block stope stress leads to abnormal occurrence of rock burst induced by face as the major factor in the accident. This research reveals the form of stress distribution in the destroyed layer of the thick conglomerate rock, analyzes the stope law of coupling for the pressure burst behavior law for the mining work face, and the choice of preventive measures to provide a theoretical basis and implementation.
关 键 词:Huge thick conglomerateHuge thick coal seamSeparationCollapseRock burst
分 类 号:TD713[矿业工程—矿井通风与安全] TD262.11
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...