检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韦光毅[1] 柳元[1] 胡天桥[1] 陈启玲[1]
机构地区:[1]广西壮族自治区柳州市疾病预防控制中心,545007
出 处:《职业与健康》2012年第17期2100-2101,2104,共3页Occupation and Health
基 金:广西卫生厅自筹经费项目(项目编号:Z2008385)
摘 要:目的分析寻找砷化氢作业工人的尿中砷含量的主要影响因素,为预防砷化氢中毒提供参考。方法收集132例砷化氢作业工人的尿砷水平及其相关因素的详细资料,采用多元逐步回归和多元线性回归的方法进行统计分析。结果获得回归方程lgY=0.551 D1+0.281 D2+0.665 X7+0.059 X8+0.005 X3-2.279,决定系数调整R2=0.885,其中D1,D2代表工种的2个虚拟变量,X7代表砷化氢浓度,X8代表自觉症状,X3代表年龄,标准化偏回归系数分别为0.569,0.268,0.624,0.056,0.054。结论回归方程表明砷化氢作业工人尿砷的主要影响因素为工种、砷化氢浓度,提示预防砷化氢中毒要做好高危工种工人的防护,控制好作业场所空气中砷化氢的浓度。[ Objective] To analyze the major factors affecting arsenic levels in urine of workers exposed to arsine, and provide reference for arsine poisoning prevention. [Methods] Detailed information on arsenic levels in urine and its related factors of 132 cases of workers exposed to arsine was collected. Stepwise multiple regression and multiple linear regression method were used for statistical analysis. [ Results] Regression equation was obtained, lg Y=0. 551 D1 +0. 281 D2 +0. 665 X1 + 0. 059 X2 +0. 005 X3-2. 279, adjusted R2 = 0. 885, D1, D2 were the two dummy variables of jobs, X7 was the concentration of arsine, X8 was symptoms, X3 was the age. Their standardized partial regression coefficients were 0. 569, 0. 268, 0. 624, 0. 056 and 0. 054. [ Conclusion] The regression equation suggests the main factors affecting arsenic levels in urine of workers exposed to arsine were the types of work and the concentration of amine, the protection of high-risk workers and the control of air arsine concentration in workplaces should be strengthened.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.158.54