改进属性识别模型在秦巴山区土壤肥力评价中的应用  被引量:1

Application of Modified Attribute Recognition Model to Evaluate Soil Fertility in Qinling-Bashan mountainous Area

在线阅读下载全文

作  者:方睿红[1] 常庆瑞[1] 宋利珍[1] 

机构地区:[1]西北农林科技大学资源环境学院,陕西杨凌712100

出  处:《土壤通报》2012年第5期1151-1155,共5页Chinese Journal of Soil Science

基  金:国家重点基础研究发展计划"973"项目;"区域水土流失过程与趋势分析"(2007CB407203);国家自然科学基金(30872073);国家科技基础性专项重点项目"秦巴山区生态群落与生物种质资源调查"(2007FY110800-07)资助

摘  要:针对秦巴山区特点,选取安康市汉阴县作为研究区。利用GPS定位共在研究区内取得2420个耕层(0~20cm)土壤样品。通过对土壤样品的全氮、有机质、碱解氮、有效磷、速效钾以及pH值等6项土壤肥力指标进行室内化验分析得到的结果,运用基于墒权和层次分析相结合的改进属性识别模型,对研究区内土壤肥力进行综合评价,并借助ArcGIS9.3绘制了土壤肥力空间分布图。结果表明:研究区肥力属中等偏上水平,其中北部及东南部低中山处肥力水平较好,中部及西南部低山丘陵地区肥力水平相对较差;改进的属性识别模型在进行评价时较为准确,且简单稳定,为土壤肥力的的综合评价提供有力的技术支撑。A total of 2420 sampling sites in topsoil (0 - 20 cm) were collected from Hanyin county, Shaanxi Province. According to interrelated principles, TN, SOM, AN, AP, AK and pH were chosen as evaluating indices. Attribute recognition model based on entropy weight and AHP was used to evaluate the soil fertility in Qinling-Bashan mountainous area. The spatial distribution map of soil fertility was delineated on the basis of GIS techniques. The results revealed a general trend that the high soil fertility in northern and southeastern areas and low fertility in the middle and southwestern areas. In general, the overall level of soil fertility in typical area was higher. The method of modified attribute recognition model was intuitive and practical. It could provide strong technical support for comprehensive evaluation of soil fertility.

关 键 词:土壤肥力 属性识别模型 秦巴山区 GIS 

分 类 号:S158[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象