电子系统健康状态监测数据优化算法  被引量:1

Optimization algorithm of electronic system condition monitoring data

在线阅读下载全文

作  者:杨森[1] 孟晨[1] 王成[1] 

机构地区:[1]军械工程学院导弹工程系,石家庄050003

出  处:《计算机应用》2012年第10期2927-2930,共4页journal of Computer Applications

基  金:总装备部科研项目;总装备部预研项目

摘  要:为解决电子系统健康状态监测数据的冗余性和高维性问题,提出了一种将样本优化和特征优化相结合的监测数据优化算法。首先,采用特征空间样本选择算法对监测数据进行样本优化,找出最具代表性的样本;然后,采用核主成分分析—分布估计算法(KPCA-EDA)对样本优化后的监测数据进行特征优化,在保证特征信息充足的情况下,保留更多的识别信息;最后,以某滤波电路为例进行了验证,仿真结果表明,该算法同KPCA等优化算法相比,在训练时间和识别率上能达到更好的平衡。To solve the redundancy and high-dimensional problem of the electronic system condition monitoring data, a monitoring data optimization algorithm that combined the sample optimization and features optimization was put forward. Firstly, monitoring data samples were optimized by feature space sample selection algorithm, and the most representative samples were found; then monitoring data characteristics were optimized by KPCA-EDA algorithm after the sample optimization. More recognition information was retained on guarantee that the feature information was enough. Finally, a filter circuit was taken as an example to simulate, and the result shows that this method is effective.

关 键 词:电子系统 监测数据优化 特征空间样本选择 核主成分分析 分布估计算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP216[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象