机构地区:[1]安徽大学资源与环境工程学院,安徽省生态工程与生物技术重点实验室,合肥230039
出 处:《湖泊科学》2012年第5期771-779,共9页Journal of Lake Sciences
基 金:国家水体污染控制与治理科技重大专项项目(2009ZX07103-002);国家自然科学基金项目(41072251);现代古生物学和地层学国家重点实验室项目(113106)联合资助
摘 要:2010年对菜子湖浮游植物群落结构进行了调查和分析,结果显示:(1)共鉴定浮游植物8门110属285种,不同月份浮游植物的种类组成存在极显著差异,3月份种类数最多,173种,1月份最少,105种.优势度分析显示:蓝藻存在全年高峰;硅藻存在1、5、9、11月的高峰;黄藻存在1、3、5月的高峰;绿藻存在11月的高峰,隐藻存在5月份的高峰;金藻存在1月份的高峰.不同月份浮游植物的细胞密度亦存在极显著差异,7月份最高,为(66.13±8.58)×105cells/L,1月份最低,为(12.78±0.61)×105cells/L,夏、秋季较高,冬、春季较低;不同月份浮游植物的生物量差异极显著,9月份最高,为2.80±0.17 mg/L,5月份最低,为0.72±0.03 mg/L.(2)Margalef丰度指数为1.51~3、Shannon-Weaver多样性指数为1.41~3.01、Pielou均匀度指数为0.39~0.66,各指数表现为冬、春季节大于夏、秋季节,3月份最高,7月份最低.(3)聚类分析的结果显示,月份不同影响因素不同,菜子湖水域浮游植物按群落结构特征的分组不同.(4)2007年相比,2010年浮游植物物种数有明显下降,由340种下降到285种,细胞密度明显上升,由(5.91±0.90)×105cells/L上升到(33.81±10.10)×105cells/L,群落结构变化较大,贫营养型和固着型藻类都有所减少,富营养型藻类、丝状藻类和浮游性藻类增多.The annual dynamics of phytoplankton community structure in Lake Caizi has been investigated in 2010. The results indicated that: ( 1 ) A total of 285 phytoplankton species from 110 genera of 8 phylum were identified. Phytoplankton species composition in different months showed significant difference. The maximal number of phytoplankton species ( 173 ) occurred in March while the minimum ( 105 ) in January. The dominant class of phytuplankton changed seasonally. Cyanophyta peaked all the year round ; diatoms had an apparent dominance in January, May, September and November; Xanthophyta also played an important role in January, March and May; Chlorophyta dominated in November, Cryptophyta dominated in May while Chrysnphyta dominated in January. The cell density and biomass of phytoplankton were higher in summer and autumn than that in winter and spring. The cell density of phytoplankton between different months had significant difference. The maximal density, with the value (66.13 ± 8.58 ) × 10^5 cells/L occurred in July while the minimal value of ( 12.78 ±0.61 ) × 10^5 cells/L appeared in January. Whereas, the maximal biomass of phytoplankton (2.80 ± 0.17 mg/L ) occurred in September and the minimal (0.72 ± 0.03 mg/L) appeared in May, and the biomass in different months was also significant different. (2) Temporal variations of three indices ( including Margalef index, Shannon-Wiener index and Pielou evenness index) were obvious. All the indices were higher in winter and spring than those in summer and autumn. The maximal value occurred in March while the minimal one appeared in July. (3) The phytoplankton community structure was influenced by different factors in different months. As a result, the groups of sampling station changed seasonally according to cluster analysis. (4) The obvious variation of phytoplankton community structure was present in 2010 compared with that in 2007. The number of species decreased from 340 in 2007 to 285 in 2010, however, the ce
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...