检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁师范大学化学化工学院,辽宁大连116029 [2]辽宁师范大学物理与电子技术学院,辽宁大连116029
出 处:《辽宁师范大学学报(自然科学版)》2012年第3期339-343,共5页Journal of Liaoning Normal University:Natural Science Edition
基 金:国家自然科学基金项目(21133005)
摘 要:通过对任意2个1s型高斯函数重叠积分的计算,明确了轨道重叠过程中影响重叠积分大小的2个主要因素——核间距及轨道指数的作用,并得出核间距越大重叠积分越小、轨道指数越小重叠积分越大的结论;其次,通过固定2个原子间距离和其中1个高斯函数的轨道指数,以及改变另1个高斯函数的轨道指数来观察重叠积分的变化情况,从而确定引入弥散函数对计算重叠积分的影响.得出当使用弥散函数来描述原子轨道时,高斯函数图像延伸范围广,使得轨道的形变程度增加,重叠区域增大.若此时使用Mulliken布居数分析方法对重叠区域的电子进行"均分"处理可能就会产生与事实不符的结果,认为对于确定的2个原子轨道重叠积分的计算,轨道指数起着至关重要的作用.In this paper, according to the calculation of overlap integral between any two ls-type Gauss function, we find two main factors the nuclear distance and power exponent, which can affect the size of the overlap integral during the process of orbital overlap. It is concluded that the greater the nuclear distance is, the smaller the overlap integral will be and the smaller the power exponent is, the greater the overlap integral will be. In addition, by observing the overlap integral, we con- firm the influence of dispersion function to the overlap. We can draw conclusion that: Describing a- tomic orbit by dispersion function, Gauss function extends widely, wich makes the degree of deform- ation and the overlap increasing. In this circumstance, it may cause unreasonable result dividing the overlap on average in Mulliken method compared to the reality. Thus the power exponent is impor- tant to the calculation of overlap integral.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49