机构地区:[1]Beijing Research Center for Information Technology in Agriculture, Beijing 100097, R.P.China [2]Institute of Agriculture Remote Sensing and Information System Application, Zhejiang University, Hangzhou 310029, R.P.China [3]Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100094, R.P.China
出 处:《Journal of Integrative Agriculture》2012年第9期1474-1484,共11页农业科学学报(英文版)
基 金:the National Natural Science Foundation of China (41101395, 41071276, 31071324);the Beijing Municipal Natural Science Foundation, China (4122032);the National Basic Research Program of China (2011CB311806)
摘 要:Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model mildew on leaf level were found to be closely related with the development. The spectral characteristics of the powdery spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2---0.69, RRMSE--0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination oPowdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model mildew on leaf level were found to be closely related with the development. The spectral characteristics of the powdery spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2---0.69, RRMSE--0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination o
关 键 词:powdery mildew disease severity continuous wavelet analysis partial least square regression
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S435.121.4[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...