检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中文信息学报》2012年第5期53-58,128,共7页Journal of Chinese Information Processing
基 金:国家自然科学基金资助项目(60903139;60873243;60933005);国家863计划重点资助项目(2010AA012502;2010AA012503)
摘 要:排序学习是当前信息检索领域研究热点之一。为了避免训练集中噪音的影响,当前排序学习算法较多关注鲁棒性。已有的工作发现相同的排序学习方法的性能在不同的数据集上会有截然不同的噪音敏感度。模型改变是导致性能下降的直接原因,而模型又是从训练集学习到的,因此根源在于训练数据的某些特性。该文根据具体排序学习场景分析得出影响噪音敏感度的根本原因在于训练集中文档对分布的结论,并在LETOR3.0上的实验验证了这一结论。Learning to rank is one of the most attractive areas in information retrieval. Much attention has been paid on the robustness of ranking algorithms to deal with noise which is inevitable in the training set. Previous work ob- serves that ranking performance of the same algorithm showed totally different noise sensitivities. The performance degradation of ranking models boils down to the training set. Thus the underlying reason for different sensitivities lies in some attribute of training data. Experimental results on LETOR3.0 suggest that if the document pairs of the same training set scatter more dispersedly, the model from this training set is less influenced by the error document pairs and the training set is thus less sensitive to noise.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12