检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐江凌[1] 蔡从中[1] 皇思洁[1] 肖婷婷[1]
出 处:《航空材料学报》2012年第5期92-96,共5页Journal of Aeronautical Materials
基 金:教育部新世纪优秀人才支持计划资助项目(NCET-07-0903);教育部留学回国人员科研启动基金资助项目(教外司留[2008]101-1);中央高校基本科研业务费资助项目(CDJXS11101135)
摘 要:为了研究不同时效工艺下Al-Cu-Mg-Ag合金强度性能,根据实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了SVR预测模型。模型以Al-Cu-Mg-Ag合金时效温度与时效时间为输入,合金的抗拉强度、屈服强度为输出。经过与BP神经网络模型进行比较,结果表明:对于相同的训练样本和检验样本,支持向量回归模型比BP神经网络模型具有更高的预测精度。To explore the strength properties of Al-Cu-Mg-Ag alloy at different aging temperature and aging time, the support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm was proposed to construct a SVR model based on experimental data. In the modeling process, the aging temperature and aging time were employed as input parameters, the tensile strength and yield strength acted as outputs. By comparison with BP neural network, it was found that the prediction accuracy of the established SVR model was higher than that of BPNN model by applying identical training and test samples. This investigation would provide a theoretical foundation for further study on the effect of aging condition on mechanical property, and the optimal design of the aging process for fabricating Al-Cu-Mg-Ag alloy.
关 键 词:AL-CU-MG-AG合金 强度 支持向量回归 粒子群优化 回归分析
分 类 号:TG146.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195