检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学通信抗干扰技术国家级重点实验室,成都611731 [2]福建莆田学院应用数学重点实验室,福建莆田351100
出 处:《电子科技大学学报》2012年第5期673-677,共5页Journal of University of Electronic Science and Technology of China
基 金:国家重点自然科学基金(61032003);国家自然科学基金(61071100);中央高校科研基本业务费(ZYGX2010J014);福建省资助省属高校科技计划重点项目(JK2010047)
摘 要:鉴于椭圆曲线密码的高度安全性,利用椭圆曲线生成伪随机序列得到了高度的重视,但目前的研究主要集中在素域上的椭圆曲线。该文在定义于扩张域上的椭圆曲线上,定义取值在[0,1)区间上的伪随机数,并利用这类伪随机数给出了一类二元门限序列的构造。通过分析伪随机数的偏差,得到了二元门限序列的一致分布测度与l阶相关测度的上界,证明中应用了指数和以及偏差与上述两种测度的联系。此外,应用l阶相关测度,给出了二元门限序列的线性复杂度轮廓的下界。Due to the high security level of elliptic curve cryptography, the constructions of pseudorandom sequences generated from elliptic curves have been paid more attention recently. But the study mainly is concentrated upon the application of elliptic curves over prime fields. This paper defines pseudorandom numbers in the interval (0,1) by using elliptic curves over extension fields and presents a construction of binary threshold sequences. A discrepancy bounds for the pseudorandom numbers is derived and used to study the pseudorandomness of the binary threshold sequences in terms of estimating upper bounds on the well-distribution measure and the correlation measure of order/, both introduced by Mauduit and Sarkozy. The proofs are based on bounds on exponential sums and earlier relations of Mauduit, Niederreiter and Sarkozy between discrepancy and both measures above. Moreover, a lower bound on the linear complexity profile of the binary threshold sequences is presented in terms of the correlation measure of order l.
关 键 词:二元序列 特征和 相关测度 椭圆曲线 线性复杂度轮廓 流密码
分 类 号:TN918[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.47