Effect of Ni Content on Mechanical Properties and Corrosion Behavior of Al/Sn-9Zn-xNi/Cu Joints  被引量:12

Effect of Ni Content on Mechanical Properties and Corrosion Behavior of Al/Sn-9Zn-xNi/Cu Joints

在线阅读下载全文

作  者:M.L.Huang N.Kang Q.Zhou Y.Z.Huang 

机构地区:[1]Key Laboratory of Liaoning Advanced Welding and Joining Technology,School of Materials Science&Engineering,DMian University of Technology,Dalian 116024,China

出  处:《Journal of Materials Science & Technology》2012年第9期844-852,共9页材料科学技术(英文版)

基  金:supported by the National Natural Science Foundation of China (Nos. U0734006 and 51171036)

摘  要:The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.

关 键 词:Al-Cu disslmilar-metal solder joint Sn-9Zn-xNi Microstructure Mechanicalproperties Electrochemical corrosion Corrosion potential 

分 类 号:TG171[金属学及工艺—金属表面处理] TM311[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象