时滞系统的多源数据融合卡尔曼滤波器研究  

Research on Multi-Source Distributed Data Fusion Kalman Filter for Time-Delayed System

在线阅读下载全文

作  者:刘文强[1] 陶贵丽[1] 武狄[1] 张剑飞[1] 

机构地区:[1]黑龙江科技学院计算机与信息工程学院,黑龙江哈尔滨150027

出  处:《计算机仿真》2012年第10期143-146,161,共5页Computer Simulation

基  金:黑龙江省教育厅科学技术研究项目(11553101)

摘  要:对于带观测时滞的线性离散时变随机控制优化问题,提出了观测变换方法,把带观测时滞状态空间模型等效地转换为无观测时滞的状态空间模型,接着应用卡尔曼(Kalman)滤波方法,在线性最小方差最优融合准则下,给出按矩阵、按对角阵和按标量加权三种最优信息融合卡尔曼(Kalman)滤波器,可分为局部最优全局次优的。融合器的精度高于每一个局部Kalman估值器的精度。可以减少用增广状态方法计算负担大的缺点。为了计算最优加权,给出了计算局部估计误差互协方差公式。对于带观测时滞的三传感器目标跟踪系统的Monte Carlo仿真例子证明了算法的有效性。For the linear discrete time-variance stochastic control systems with time-delayed measurements,a measurement transformation approach was presented,which transforms the equivalent state space model with measurement delays into the state space model without measurement delays.And then using the Kalman filtering method,under the linear minimum variance optimal weighted fusion rules,three distributed optimal fusion Kalman filters weighted by matrices,diagonal matrices and scalars were presented.They are locally optimal and globally suboptimal.The accuracy of the fuser is higher than that of each local Kalman estimator.They overcome the drawback that the augmented state method requires a large computational burden.In order to compute the optimal weights,the formulae of computing the cross-covariances among local estimation errors were given.A Monte Carlo simulation example for the three-sensor target tracking system with time-delayed measurements shows its effectiveness.

关 键 词:多传感器信息融合 时滞系统 加权融合 局部滤波互协方差 

分 类 号:O211.64[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象