检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学信息工程学院,浙江杭州310032
出 处:《红外》2012年第10期43-48,共6页Infrared
摘 要:快速检测活体水果内部品质对于确定水果最佳采摘时机和果园信息化管理具有重要意义。以南方棚栽葡萄为研究对象,应用光谱技术对处于生长期的四个葡萄品种的可溶性固体含量(SSC)进行现场测试。分别采用偏最小二乘法(PLS)回归、潜变量人工神经网络(LV-ANN)和潜变量支持向量机(LV-SVM)三种方法为光谱建模集建立了SSC校正模型。用验证集对模型的预测性能进行了评价。与PLS和LV-ANN模型相比,LV-SVM模型的预测性能最佳。实验结果表明,将光谱技术与LV-SVM建模法相结合适用于果园葡萄活体可溶性固体含量无损检测。The fast detection of inner quality of living fruit is of importance to the selection of optimal harvest time and to the information management of an orchard. The trellised grapes in the southern part of our country are used as the research object. The soluble solid content (SSC) of four kinds of grapes in growth is detected by using a visible and near infrared spectrophotometer on site. The SSC correction models are established by using Partial Least Square regression (PLS) , Latent Variable and Artificial Neural Network (LV-ANN) and Latent Variable and Support Vector Machine (LV-SVM) respectively. The prediction performance of these models is evaluated by using a validation set. Compared with the PLS and LV-ANN models, the LV-SVM model has the best prediction performance. The experimental result shows that the combination of spectroscopy with the LV-SVM modeling is suitable for the nondestructive SSC detection of living grapes in an orchard.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195