检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHEN Guang-yi WEI Zhi-yong LIANG Ce WANG De-jin LIANG Ji-cai ZHANG Wan-xi
机构地区:[1]State Key Laboratory of Structural Analysis for Industrial Equipment,School of Automotive Engineering,Dalian University of Technology,Dalian 116024,P.R.China [2]College of Materials Science and Engineering,Jilin University,Changchun 130025,P.R.China
出 处:《Chemical Research in Chinese Universities》2012年第5期757-759,共3页高等学校化学研究(英文版)
基 金:Supported by the National High Technology Research and Development Program of China(No.2009AA03Z319);the Doctor Startup Fundation of Liaoning Province of China(No.20101010);the Fundamental Research Funds for the Central Universities of China(No.DUT12LK04)
摘 要:A facile and efficient strategy was reported for the preparation of graphene nanosheets-Ag2S hybrid by a simple hydrothermal process. First, Ag2S particles deposited on the surface of graphene oxide(GO) sheet. GO was then reduced by hydrazine hydrate to graphene. The results of X-ray diffraction(XRD) and Fourier transform infrared(FTIR) demonstrated the efficient reduction of GO to graphene. Transmission electron microscopy(TEM) image of the sample reveals the morphology of the architecture of graphene-Ag2S hybrid. Ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) measurement were further employed to study the optical properties of the obtained nanocomposite. This work can be extended to design other graphene-based hybrid nanomaterials, and the as-grown architectures may hold promise for many applications.A facile and efficient strategy was reported for the preparation of graphene nanosheets-Ag2S hybrid by a simple hydrothermal process. First, Ag2S particles deposited on the surface of graphene oxide(GO) sheet. GO was then reduced by hydrazine hydrate to graphene. The results of X-ray diffraction(XRD) and Fourier transform infrared(FTIR) demonstrated the efficient reduction of GO to graphene. Transmission electron microscopy(TEM) image of the sample reveals the morphology of the architecture of graphene-Ag2S hybrid. Ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) measurement were further employed to study the optical properties of the obtained nanocomposite. This work can be extended to design other graphene-based hybrid nanomaterials, and the as-grown architectures may hold promise for many applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200