多光谱遥感影像的SAM-SID混合分类技术研究  被引量:2

Classification of Multispectral Images Based on SAM-SID Mixed Measure

在线阅读下载全文

作  者:吴俊君[1] 高志海[1] 王琫瑜[1] 白黎娜[1] 杨海山 王红岩[1] 王志波[1] 

机构地区:[1]中国林业科学研究院资源信息研究所,北京100091 [2]内蒙古宁城县林业局,内蒙古宁城024200

出  处:《遥感信息》2012年第5期67-72,共6页Remote Sensing Information

基  金:国家科技支撑计划项目(2011BAH23B04);国家重大专项(E0305/1112)资助

摘  要:以SPOT 5多光谱影像为数据源,通过与SAM、SID以及常规的最大似然法(ML)和最小距离法(MD)的对比,研究了基于SAM-SID混合法的土地覆盖多光谱遥感分类技术。研究结果显示,相比于SAM和SID,SID(TAN)和SID(SIN)两个SAM-SID混合参量对多光谱影像上地物识别的能力更强,尤以SID(SIN)的识别能力最强;基于SID(SIN)的多光谱遥感分类验证精度达78.94%,不但明显高于SAM和SID法,而且也高于常规的MD和ML监督分类方法。这说明SAM-SID混合分类方法不但适用于高光谱遥感分类,同时在多光谱遥感分类中也有很强的适用性。SAM-SID mixed measue is an improved remote sensing classification method,which is applied by matching spectrum curve based on Spectral Angle Mapper(SAM) and Spectral Information Divergence(SID),and it has received excellent effect on hyperspectral image classification.In order to evaluate its applicability on multispectral images classification,and taking SPOT 5 images as an example,the classification method of multispectal images based on SAM-SID mixed measure-SID(SIN) and SID(TAN),was studied by comparison with SAM,SID,Maximum Likelihood(ML) and Minimum Distance(MD).The results show that the abilities of SID(TAN)and SID(SIN) for recognizing surface features in multispectal images are stronger than that of SAM and SID,in which SID(SIN) is more stronger.The classification accuracy of images based on SID(SIN) reached 78.94%,higher than that of the SAM and SID,also significantly higher than conventional ML and MD methods.This reflects that SAM-SID Mixed Measure is not only suitable for hyperspectral image classification,but also strongly applicable in multispectral image classification.

关 键 词:多光谱影像分类 光谱角匹配法(SAM) 光谱信息散度法(SID) SAM-SID混合法 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象