检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国地震局地质研究所,北京100029 [2]湖北省地震局,武汉430071
出 处:《震灾防御技术》2012年第3期273-284,共12页Technology for Earthquake Disaster Prevention
基 金:2011年度地震行业科研专项(201108002-4)资助
摘 要:人口是地震灾害的重要受灾体,准确的人口空间分布信息是防震减灾工作的重要依据。本文借助地理信息系统,将人口统计数据与高分辨率遥感数据相结合,应用基于居民地的人口数据空间化方法,模拟人口空间分布。首先根据城市人口—面积异速生长模型的分形几何意义,推导出城乡人口—面积统一模型;进而以2007年宁洱地震灾区为例,在建立居民地分类体系和遥感解译标志的基础上,目视解译获得准确的居民地信息;最后应用城乡人口—面积统一模型获得网格人口密度矢量数据。经检验,本文的结果达到了较高的精度。同时在人口数据空间化完成的基础上,以地震受灾人口估算为例,探讨了人口数据空间化在防震减灾中的应用。研究结果表明,基于网格人口矢量数据的受灾人口估算结果更能客观反映地震灾情,可以为防震减灾和应急救援工作提供可靠的依据。Information of population distribution is important for earthquake disaster reduction and earthquake emergency response. By combining population statistical data with high-resolution RS data, we adopted a method based on residential area to simulate population distribution by using GIS in this paper. On the basis of allometric growth model of urban population-area and its mathematical sense, a model of rural & urban population-area was developed. And then, taking 2007 Ning'er earthquake as an example, we extracted the residential area information from the RS image by mean of residential area classification. Finally, referenced with the model of rural & urban population-area and residential area information, the vector data of population distribution at a lkm2 grid-cell was obtained. Furthermore, through spatial statistical analysis, we applied the population distribution data from the model to estimate the earthquake affected population. Compared to the estimated result from average population density, the estimated result based on the vector population density generated in our model is capable of better estimation of earthquake disaster, and therefore, can provide more reliable data for earthquake disaster reduction and emergency response.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229