检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭显坤[1]
出 处:《机床与液压》2012年第19期28-33,共6页Machine Tool & Hydraulics
摘 要:控制系统的性能是由控制器的控制参数确定的。粒子群优化控制算法中存在的参数选择难题,如基本PSO算法易于陷入早熟收敛现象引起的局部最优解,导致不可能收敛于全局最优解,搜索精度不高以及收敛速度慢.针对以上问题,提出了一种改进的粒子群优化控制算法。讨论了具有遗传思想的粒子群优化算法,研究了改进的PSO控制算法,借助仿真实验对所设计的控制算法作了比较研究。仿真实验结果的响应曲线显示,其动静态特性优于传统方法的响应特性,验证了所提出改进控制算法的合理性与可行性。研究结果表明,所提出的改进PSO控制算法对控制器参数整定更加有效。The performance of control system is determined by the control parameter of controller. Aimed at the puzzle of parameter selection for particle swarm optimization (PSO) control algorithm that the phenomenon of premature convergence made the basic PSO algorithms have been easy to get in local optimal solution, and resulted in impossible convergence to global extremum, as well as being not so high in search precision and slower in convergence speed, the paper proposed a sort of improved control algorithm based on particle swarm optimization. In the paper, it discussed the particle swarm optimization algorithms with genetic thought (GAPSO), researched on improved algorithm of PSO, and made the comparative study for proposed control algorithm by means of simulation experiment. The response curve of simulation result demonstrated that it would be better in comparison with conventional method in dynamic and steady performance, and verified the reasonability and feasibility of the improved control algorithm. The research result shows that the improved algorithm of PSO proposed by the paper is more effective for controller parameter tuning.
关 键 词:粒子群优化算法 遗传思想 参数整定 改进的PSO控制算法
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7