检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川托普信息技术职业学院计算机科学与技术系,四川成都611743
出 处:《计算机与现代化》2012年第10期58-61,64,共5页Computer and Modernization
摘 要:讨论若干Deep Web数据库分类准确性的前沿技术,建立基于词频和DOM树的文本特征提取方法模型,提出计算Deep Web数据库的基于权值的K-NN(K Nearest Neighbors)分类优化算法。利用UIUC提供的TEL-8数据集和WEKA平台的各类算法进行实验,并对分类精度、召回率和综合F-measure等测度上的分类结果进行比较。实验结果表明,该方法模型在3个指标上表现都较为突出。Several critical leading techniques are discuss for Deep Web database classification,TF-IDF and DOM-tree-based feature extraction model is established,improved weighted K-NN classification algorithm is proposed.This paper utilizes UIUC datasets and WEAK platform to carry out experiments.Results of the method(precision,recall rate and F-measure measure) and that of other literatures are compared,each indicator displays good performance.
关 键 词:DEEP Web 网页文本 词频 K-NN分类算法 DOM树
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.209.49