检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李峰[1,2] 申利民[1,3] 司亚利[1] 牛景春[1]
机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004 [2]东北大学秦皇岛分校计算机与通信工程学院,河北秦皇岛066004 [3]河北省计算机虚拟技术与系统集成重点实验室,河北秦皇岛066004
出 处:《通信学报》2012年第10期60-70,共11页Journal on Communications
基 金:国家自然科学基金资助项目(61272125);河北省自然科学基金资助项目(F2011203234);河北高等学校科学技术研究重点基金资助项目(ZH2011115)~~
摘 要:构建了一种基于交互感知的动态自适应信任评估模型,将历史交互窗口和可信推荐数引入到了总体信任评估中,克服了传统模型对交互证据感知能力不足的问题。提出了基于满意度迭代的直接信任积累方法,并采用实体稳定度实现了激励和惩罚2种迭代策略,有效抑制了恶意伪装实体的作弊行为。给出了一种基于直接和间接相结合的综合推荐信任聚合方法,通过引入实体熟悉度和评分相似度解决了传统模型推荐准确度低和不可靠的问题。实验结果表明,与已有模型相比,该模型有效地提高了信任评估的准确性,并具有更强的抵御串谋实体协同作弊的能力。A dynamic adaptive trust evaluation model was established based on interaction-aware. The historical interac- tion window and trustworthy recommendation number was introduced in overall trust evaluation method, which over- comes the shortage of traditional models that lack the capacity to interaction-aware. The direct trust accumulation method based on interaction satisfaction degree iterative calculation was proposed, which achieved the incentive and penalty it- erative strategy based on entity stability factor, and effectively inhibits malicious entities with camouflage. A synthetical recommendation trust aggregating method based on combination of direct and indirect recommendation trust was given, which solved the accuracy low and unreliable problems of traditional recommendation methods by introducing entity fa- miliarity factor and scoring similarity factor. Simulation results show that, compared to the existing trust model, the model can effectively improve the accuracy of trust evaluation, and can provide a better capacity of resisting collusive entities.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222