基于ANN/HMM混合模型汉语大词表连续语音识别系统  被引量:1

Large Vocabulary Continuous Speech Recognition System based on Hybrid Hidden Markov Model(HMM) and Artificial Neural Network(ANN)

在线阅读下载全文

作  者:蒋瑞[1] 李海峰[1] 马琳[1] 

机构地区:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001

出  处:《智能计算机与应用》2012年第5期23-26,30,共5页Intelligent Computer and Applications

摘  要:提出一种基于隐马尔可夫模型(Hidden Markov model,HMM)和人工神经网络(Artificial Neural Network,ANN)混合模型的汉语大词表连续语音识别系统。在混合模型系统中,多种模型协同工作。ANN负责建模音素发音物理特性,HMM联合语言学模型识别待识语料。这样,混合模型系统能够结合HMM和ANN两种模型的优点:HMM对时间序列结构建模能力强;ANN的非线性预测能力强,建模能力强,鲁棒性,便于硬件实现。实验结果表明,HMM/ANN混合模型系统有效结合了两种模型的优点,提高了识别率。This paper proposes a method of mandarin large vocabulary continuous speech recognition system based on hybrid Hidden Markov model(HMM) and Artificial Neural Network (ANN). In the system, a variety of models work together. ANN models realize pho- netic properties, and HMM incorporates with linguistics model for recognizing utterances. In this way,the system can combine advantages of both ANN and HMM: HMM has high modeling ability on time sequence structure; ANN has strong ability of nonlinear prediction, model- ing and robustness, as well as facilitation for hardware implementation. The experimental results show that the system effectively takes ad- vantages of both ANN and HMM, and improves the performance.

关 键 词:大词表连续语音识别 混合模型 隐马尔科夫模型 人工神经网络模型 多路径 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象