REGULARITY AND SYMMETRY OF SOLUTIONS OF AN INTEGRAL SYSTEM  被引量:2

REGULARITY AND SYMMETRY OF SOLUTIONS OF AN INTEGRAL SYSTEM

在线阅读下载全文

作  者:陈晓莉 杨健夫 

机构地区:[1]Department of Mathematics,Zhejiang University [2]Department of Mathematics,Jiangxi Normal University

出  处:《Acta Mathematica Scientia》2012年第5期1759-1780,共22页数学物理学报(B辑英文版)

基  金:Chen research is supported by NSF of China (10961015);Yang research is supported by NSF of China (10961016);the GAN PO555 Program of Jiangxi

摘  要:In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β dy for x ∈ R n,where G α(x) is the kernel of Bessel potential of order α,0 ≤β 〈 α 〈 n,1 〈 p,q 〈 n-β/β and 1/p + 1 + 1/q + 1 〉 n-α + β/n.We show that positive solution pairs(u,v) ∈ L p +1(R n) × L q +1(R n) are Ho¨lder continuous,radially symmetric and strictly decreasing about the origin.In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β dy for x ∈ R n,where G α(x) is the kernel of Bessel potential of order α,0 ≤β 〈 α 〈 n,1 〈 p,q 〈 n-β/β and 1/p + 1 + 1/q + 1 〉 n-α + β/n.We show that positive solution pairs(u,v) ∈ L p +1(R n) × L q +1(R n) are Ho¨lder continuous,radially symmetric and strictly decreasing about the origin.

关 键 词:REGULARITY radially symmetry Bessel kernel nonlinear integral system 

分 类 号:O175.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象