One-Pot Terpolymerization of CO2, Propylene Oxide and Lac- tide Using Rare-earth Ternary Catalyst  被引量:1

One-Pot Terpolymerization of CO2, Propylene Oxide and Lac- tide Using Rare-earth Ternary Catalyst

在线阅读下载全文

作  者:顾林 秦玉升 高永刚 王献红 王佛松 

机构地区:[1]Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry,Chinese Academy of Science,Changchun,Jilin 130022,China [2]Graduate University of Chinese Academy of Sciences,Beijing 100039,China

出  处:《Chinese Journal of Chemistry》2012年第9期2121-2125,共5页中国化学(英文版)

摘  要:A convenient one-pot terpolymerization of CO2, propylene oxide (PO), and L-lactide (L-LA) in short polymerization time (10 h or shorter) to afford poly(propylene carbonate-lactide) with excellent mechanical property and thermal stability using Y(CCl3COO)3-ZnEtz-glycerin rare-earth ternary catalyst is reported. The yield of the co- polymerization was between 69.7 and 111.7 g/(g Zn), corresponding to L-LA/PO molar feed ratio varying from 0 to 0.1, and the number average molecular weight was between 5.5×10^4 and 11.9 × 10^4. The L-LA content in the ter- polymer increased from 1.1% to 34.7% when L-LA/PO molar feed ratio changed from 0.01 to 0.1. Introducing L-LA as the third comonomer could significantly improve the mechanical strength and thermal stability of PPC. For the terpolymer obtained from L-LA/PO molar feed ratio of 1:50, the elongation at break reached 40.5%, which is 3 times of that of pure PPC, and the thermal decomposition temperature increased by 32℃ compared with pure PPC.A convenient one-pot terpolymerization of CO2, propylene oxide (PO), and L-lactide (L-LA) in short polymerization time (10 h or shorter) to afford poly(propylene carbonate-lactide) with excellent mechanical property and thermal stability using Y(CCl3COO)3-ZnEtz-glycerin rare-earth ternary catalyst is reported. The yield of the co- polymerization was between 69.7 and 111.7 g/(g Zn), corresponding to L-LA/PO molar feed ratio varying from 0 to 0.1, and the number average molecular weight was between 5.5×10^4 and 11.9 × 10^4. The L-LA content in the ter- polymer increased from 1.1% to 34.7% when L-LA/PO molar feed ratio changed from 0.01 to 0.1. Introducing L-LA as the third comonomer could significantly improve the mechanical strength and thermal stability of PPC. For the terpolymer obtained from L-LA/PO molar feed ratio of 1:50, the elongation at break reached 40.5%, which is 3 times of that of pure PPC, and the thermal decomposition temperature increased by 32℃ compared with pure PPC.

关 键 词:carbon dioxide propylene oxide L-LACTIDE TERPOLYMERIZATION 

分 类 号:TQ116.3[化学工程—无机化工] X734.201[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象