检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电声技术》2012年第10期49-52,共4页Audio Engineering
摘 要:室内场所是语音识别技术的一种典型应用环境,传统的端点检测研究多考虑噪声的影响,忽略室内混响的影响,研究证明室内混响对端点检测和识别效果能造成显著的负面影响。通过研究短时能量和短时自相关序列(RAS),提出了一种自适应的端点检测方法。可以通过估计噪声段短时能量来适应平稳噪声干扰环境,并能修正含混响语音的检测终点。端点检测和语音识别实验结果表明,本方法在平稳噪声和室内混响声环境下具有良好的性能。Enclosed space is a typical application environment for the technique of speech recognition. Traditional studies in the speech endpoint detection usually consider the white noise environment, but rarely the room reverberation case. In the sound fields in rooms the correct rate of isolated word recognition degrades dramatically. One of the most important reason is the ineffective speech endpoint detection algorithm. A new adaptive detection method based on the short - term energy and relative autocorrelation sequences (RAS) is presented. This method eliminates the noise energy and can work in an effective and adoptive way in white noise circumstance, and can correct the end point of the reverberant speech. The experimental re- suits are based on endpoint detection and recognization system demonstrate that this method performs well when the speech is affected by the white noise and the room reverberation.
分 类 号:TN912[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38