机构地区:[1]The State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi’an 710075,China [2]Department of Environmental Science and Technology,School of Human Settlements and Civil Engineering,Xi’an Jiaotong University,Xi’an 710049,China [3]Graduate University of Chinese Academy of Sciences,Beijing 100049,China
出 处:《Science China Earth Sciences》2012年第11期1847-1854,共8页中国科学(地球科学英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 40901060,41023006,and 40890051);National Basic Research Program of China (Grant No. 2010CB833405);the State Key Laboratory of Loess and Quaternary Geology and the Sino-Swedish Tree-Ring Research Center (SISTRR) Contribution
摘 要:A robust tree-ring-width chronology was developed from two Pinus tabulaeformis sampling sites in the source of the Fenhe River,Shanxi Province,China.Based on the tree-ring-width indices,a 157-year long Palmer Drought Severity Index(PDSI) was reconstructed,which explains 53.7% of the variance of the modeled PDSI over the common period 1957-2008.The drought periods in the study area include 1914-1931 and 1970 to the present,whereas the wet periods were 1866-1892 and 1932-1969.The drought of 1914-1931 was a severe long-lasting drought with a low inter-annual variability,and the drought of 1970-2009 was an overall long-term drought with a high inter-annual variability.The period of 1866-1892 is a continuously wet period with a low inter-annual variability and the period of 1932-1969 is an overall long-term wet period with a high inter-annual variability.The reconstructed PDSI series in the source of the Fenhe River shows synchronous variations with the regional drought/wetness indices.Spatial correlation analyses indicate that the higher correlations lie exclusively in the Fenhe River Basin.This indicates that the reconstructed PDSI has regional representativeness and can represent the drought history of the entire Fenhe River Basin to some extent.Furthermore,the reconstructed PDSI matches with the variability of the per unit yield of summer grain crops in Shanxi Province very well and they have significant correlation.From a long-term perspective the reconstructed PDSI series could supply scientific and valuable information to the water resources management and then help the sustainable development in agricultural production,economic development,and ecosystem balance.A robust tree-ring-width chronology was developed from two Pinus tabulaeformis sampling sites in the source of the Fenhe River,Shanxi Province,China.Based on the tree-ring-width indices,a 157-year long Palmer Drought Severity Index(PDSI) was reconstructed,which explains 53.7% of the variance of the modeled PDSI over the common period 1957-2008.The drought periods in the study area include 1914-1931 and 1970 to the present,whereas the wet periods were 1866-1892 and 1932-1969.The drought of 1914-1931 was a severe long-lasting drought with a low inter-annual variability,and the drought of 1970-2009 was an overall long-term drought with a high inter-annual variability.The period of 1866-1892 is a continuously wet period with a low inter-annual variability and the period of 1932-1969 is an overall long-term wet period with a high inter-annual variability.The reconstructed PDSI series in the source of the Fenhe River shows synchronous variations with the regional drought/wetness indices.Spatial correlation analyses indicate that the higher correlations lie exclusively in the Fenhe River Basin.This indicates that the reconstructed PDSI has regional representativeness and can represent the drought history of the entire Fenhe River Basin to some extent.Furthermore,the reconstructed PDSI matches with the variability of the per unit yield of summer grain crops in Shanxi Province very well and they have significant correlation.From a long-term perspective the reconstructed PDSI series could supply scientific and valuable information to the water resources management and then help the sustainable development in agricultural production,economic development,and ecosystem balance.
关 键 词:tree-ring-width indices PDSI reconstruction DROUGHT the Fenhe River Basin China
分 类 号:P425.42[天文地球—大气科学及气象学] TN915.05[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...