检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢晓芬[1] 裘索[1] 郭锴凌[1] 徐向民[1]
机构地区:[1]华南理工大学电子与信息学院,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2012年第8期63-68,75,共7页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(61171142);广东省重大科技专项(2011A010801005;2010A080402015)
摘 要:现有的在线跟踪算法在应对目标复杂形变时易出现跟踪偏差.文中通过寻找鲁棒的特征去刻画目标外观来解决这一问题,即模拟人眼视皮层腹侧通路感知机制,引入具有位置尺度不变性、复杂形状选择特性的C2特征,建立一个基于认知碎片集进行C2特征识别的在线目标跟踪模型,并根据认知碎片在目标识别中所起的作用对其重要性进行评估,依据评估结果实现认知碎片的在线淘汰与更新,同时引入在线目标/背景分类器,对新加入认知碎片记忆池的碎片进行筛选,解决了跟踪到的目标区域中的背景部分参与模型更新可能造成的误差累积问题.仿真实验结果表明:该算法在应对目标复杂形变和严重遮挡时,具有一定的鲁棒性与有效性.In the existing online object tracking algorithms, tracking deviation commonly occurs when there exists a complex deformation of object appearance. In order to solve this problem, this paper employs robust features to de- scribe the object appearance. First, the perception mechanism of the ventral pathway of human visual cortex is imi- tated, and C2 feature, which is invariant to position and scale and can distinguish complex shapes, is introduced. Then, a novel online object-tracking model based on a cognitive patch set is put forward to recognize C2 feature. In this model, the importance of a cognitive patch is estimated according to its role in the object recognition, and based on the estimated results, online elimination and update of cognitive patches are realized. Meanwhile, an on- line object/background classifier is adopted to distinguish new candidate patches, thus solving the problem of the error accumulation resulting from the participation of the background part of the object region in the model adjust- ment. Simulated results indicate that the proposed method is robust and effective in the presence of complex object deformation and severe occlusion.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117