检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周野飞 杨育林 齐效文 姜永文 杨健 任学军 杨庆祥
机构地区:[1]State Key Laboratory of Metastable Materials Science&Technology,Yanshan University [2]School of Engineering,Liverpool John Moores University
出 处:《Journal of Rare Earths》2012年第10期1069-1074,共6页稀土学报(英文版)
基 金:Project supported by National Natural Science Foundation of China(51271163);Key Project of Science and Technology of Hebei Province(09215106D)
摘 要:The Fe-Cr-C claddings formed by arc surface welding with different La2O3 additions were investigated. The microstructures were observed by optical microscopy (OM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The phase structures were measured by X-ray diffraction (XRD). The wear resistances of the claddings were tested by friction and wear ex- periment. On this basis, the carbide refinement mechanism by inclusion enriched with La was discussed theoretically. The results showed that, the microsttucture of the Fe-Cr-C cladding consisted of primary (Cr, Fe)TC3 carbides and eutectic (γ-Fe+(Cr, Fe)7C3) structure. With La2O3 ad- dition increasing, the primary carbides were refined, and the mass loss of the cladding decreased gradually. The Fe-Cr-C cladding with 4 wt.% La2O3 addition had a best wear resistance behaviour. The RE inclusion LaAlO3 as heterogeneous nuclei of the primary MTC3 was medium ef- fective, and could refine the M7C3 carbides. Besides, the wear resistance could be improved by adding La2O3 in the claddings.The Fe-Cr-C claddings formed by arc surface welding with different La2O3 additions were investigated. The microstructures were observed by optical microscopy (OM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The phase structures were measured by X-ray diffraction (XRD). The wear resistances of the claddings were tested by friction and wear ex- periment. On this basis, the carbide refinement mechanism by inclusion enriched with La was discussed theoretically. The results showed that, the microsttucture of the Fe-Cr-C cladding consisted of primary (Cr, Fe)TC3 carbides and eutectic (γ-Fe+(Cr, Fe)7C3) structure. With La2O3 ad- dition increasing, the primary carbides were refined, and the mass loss of the cladding decreased gradually. The Fe-Cr-C cladding with 4 wt.% La2O3 addition had a best wear resistance behaviour. The RE inclusion LaAlO3 as heterogeneous nuclei of the primary MTC3 was medium ef- fective, and could refine the M7C3 carbides. Besides, the wear resistance could be improved by adding La2O3 in the claddings.
关 键 词:Fe-Cr-C cladding: rare earth oxide carbides: microstructure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62