机构地区:[1]School of Chemical Engineering,Hefei University of Technology,Hefei 230009,China [2]Anhui Key Laboratory of Controllable Chemical Reaction&Material Chemical Engineering,Hefei 230009,China
出 处:《Frontiers of Chemical Science and Engineering》2012年第3期246-252,共7页化学科学与工程前沿(英文版)
基 金:Acknowledgements The authors are grateful to the financial support of the National Natural Science Foundation of China (Grants Nos. 20871038, 20976033 and 21176054), the Fundamental Research Fund for the Central Universities (2010HGZY0012) and the Education Department of Anhui Provincial Government (TD200702).
摘 要:A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed solvent. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) images show that the shells of the HA hollow spheres are actually composed of nanosheets with thicknesses of about 10 nm. By tuning the glycerin/water volume ratio, two other kinds of HA solid spheres with average diameters of about 6 or 20 pm were assembled from nanoflakes. The properties of the different kinds of spheres as drug delivery carriers were evaluated. Ibuprofen (IBU) was chosen as the model drug to load into the HA samples. The nanostructured HA samples showed a slow and sustained release of IBU. The HA hollow spheres exhibited a higher drug loading capacity and more favorable release properties than the HA solid spheres and thus are very promising for controlled drug release applications.A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed solvent. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) images show that the shells of the HA hollow spheres are actually composed of nanosheets with thicknesses of about 10 nm. By tuning the glycerin/water volume ratio, two other kinds of HA solid spheres with average diameters of about 6 or 20 pm were assembled from nanoflakes. The properties of the different kinds of spheres as drug delivery carriers were evaluated. Ibuprofen (IBU) was chosen as the model drug to load into the HA samples. The nanostructured HA samples showed a slow and sustained release of IBU. The HA hollow spheres exhibited a higher drug loading capacity and more favorable release properties than the HA solid spheres and thus are very promising for controlled drug release applications.
关 键 词:HYDROXYAPATITE hollow spheres synthesis drug release
分 类 号:TQ174.75[化学工程—陶瓷工业] O614.241[化学工程—硅酸盐工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...