Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications  被引量:1

Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications

在线阅读下载全文

作  者:Dongjiao ZHOU Shaochuan SHEN Junxian YUN Kejian YAO Dong-Qiang LIN 

机构地区:[1]State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310032,China [2]Department of Chemical and Biological Engineenng,Zhejiang University,Hangzhou 310027,China

出  处:《Frontiers of Chemical Science and Engineering》2012年第3期339-347,共9页化学科学与工程前沿(英文版)

基  金:Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 20876145, 21036005), the Science and Technology Cooperation Project between China-Europe Country's Governments from the Ministry of Science and Technology of China (No. 1017) and the Zhejiang Provincial Natural Science Foundation of China (No. Y4080326).

摘  要:Dextran-hyaluronate (Dex-HA) based supermacroporous cryogel scaffolds for soft tissue engineering were prepared by free radical cryo-copolymerization of aqueous solutions containing the dextran methacrylate (Dex-MA) and hyaluronate methacrylate (HA-MA) at various macromonomer concentrations under the freezing condition. It was observed that the suitable total concen- tration of macromonomers for the preparation of Dex-HA cryogel scaffold with satisfied properties was 5% (w/w) at the HA-MA concentration of 1% (w/v), which was then used to produce the test scaffold. The obtained cryogel scaffold with 5% (w/w) macromonomer solution had high water permeability (5.1 × 10 ^-2m2) and high porosity (92.4%). The pore diameter examined by scanning electron microscopy (SEM) was in a broad range of 50-135 um with the mean pore diameter of 91 um. Furthermore, the cryogel scaffold also had good elastic nature with the elastic modulus of 17.47±1.44 kPa. The culture of 3T3-L1 preadipocyte within the scaffold was investigated and observed by SEM. Cells clustered on the pore walls and grew inside the scaffold indicating the Dex-HA cryogel scaffold could be a promising porous biomaterial for applications in tissue engineering.Dextran-hyaluronate (Dex-HA) based supermacroporous cryogel scaffolds for soft tissue engineering were prepared by free radical cryo-copolymerization of aqueous solutions containing the dextran methacrylate (Dex-MA) and hyaluronate methacrylate (HA-MA) at various macromonomer concentrations under the freezing condition. It was observed that the suitable total concen- tration of macromonomers for the preparation of Dex-HA cryogel scaffold with satisfied properties was 5% (w/w) at the HA-MA concentration of 1% (w/v), which was then used to produce the test scaffold. The obtained cryogel scaffold with 5% (w/w) macromonomer solution had high water permeability (5.1 × 10 ^-2m2) and high porosity (92.4%). The pore diameter examined by scanning electron microscopy (SEM) was in a broad range of 50-135 um with the mean pore diameter of 91 um. Furthermore, the cryogel scaffold also had good elastic nature with the elastic modulus of 17.47±1.44 kPa. The culture of 3T3-L1 preadipocyte within the scaffold was investigated and observed by SEM. Cells clustered on the pore walls and grew inside the scaffold indicating the Dex-HA cryogel scaffold could be a promising porous biomaterial for applications in tissue engineering.

关 键 词:cryogel scaffold tissue engineering dextran hyaluronate 3T3-L1 preadipocyte 

分 类 号:TQ658[化学工程—精细化工] TB39[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象