基于脆性风险熵的复杂电网连锁故障脆性源辨识模型  被引量:39

Brittleness Source Identification Model for Cascading Failure of Complex Power Grid Based on Brittle Risk Entropy

在线阅读下载全文

作  者:刘文颖 王佳明 谢昶 王维洲[2] 

机构地区:[1]新能源电力系统国家重点实验室(华北电力大学),北京市昌平区102206 [2]甘肃电力科学研究院,甘肃省兰州市730050

出  处:《中国电机工程学报》2012年第31期142-149,230,共8页Proceedings of the CSEE

基  金:国家电网公司重点科技项目(2011103004)~~

摘  要:复杂电网连锁故障是引发系统大停电的主要原因,其实质是脆性源被激发后系统脆性的传播过程。为研究复杂电网大停电的机理及防御措施,同时找出电网的薄弱环节,提出了一种基于复杂系统脆性理论的连锁故障脆性源辨识模型。模型从电力系统本身具有的脆性出发,用潮流熵来衡量电网所处的状态,通过脆性关联及熵增分别从元件和宏观上阐述连锁故障的传播机理。提出了脆性源的辨识方法,并综合元件脆性关联度的分析给出了对连锁故障影响较大的系统薄弱环节的判定流程,通过对连锁故障过程的模拟,用脆性风险熵来评估元件退出运行对电网状态的影响及造成的负荷切除,为连锁故障防御策略制定提供依据。以甘肃电网为例验证了模型的有效性和可行性。AThe essence of cascading failure in complex power system, which is the main reason of large-scale blackouts, is brittleness process when the brittleness source is excited. To study how large-scale blackouts take place and the defense measures, meanwhile, find out the high-risk lines, the author proposed a brittleness source identification model for cascading failure based on brittleness theory of complex system. From the view that brittleness is the nature of power system, the model used power flow entropy to measure the condition of power grid, and analyzed the mechanism of cascading failure by brittleness relevance and entropy increase from component and macroscopic aspects respectively. Take the identifying method of brittleness sources and brittleness relevance degree of grid components into consideration, a determining process of high-risk lines was given. Through simulation of cascading failure, brittle risk entropy was applied to assess the impact of component outage from power .grid operation and the load removed, and this can provide a basis for defensive strategy making. Taking Gansu power network as an example, the feasibility and effectiveness of the proposed defense model were validated.

关 键 词:复杂电网 连锁故障 脆性源 脆性关联 脆性风险熵 

分 类 号:TM71[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象