检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电网智能化调度与控制教育部重点实验室(山东大学),山东省济南市250061
出 处:《中国电机工程学报》2012年第31期166-173,233,共8页Proceedings of the CSEE
基 金:国家自然科学基金项目(51107074)~~
摘 要:为对多谐波源系统中各谐波源的谐波责任进行正确区分,提出一种基于M估计稳健回归的评估方法。首先根据公共连接点处各谐波电压相量之间的关系定义了评价谐波源责任的指标因子。利用时间序列分割法选择出满足分析要求的谐波电压和谐波电流历史数据。利用反复加权的最小二乘迭代法求解回归系数,根据回归系数计算出谐波责任指标因子,进而评估多谐波源系统中各谐波源的谐波责任。该方法大大削弱了数据异常值对回归系数的影响,克服了传统最小二乘法对奇异数据敏感、评估精度低的缺点。仿真分析和实际算例均验证了该方法的有效性以及相对于传统最小二乘法的优越性。Based on the M-estimation robust regression, a method to determine the harmonic contributions of multiple harmonic sources was proposed in this paper. Firstly, the harmonic impact index factor was defined based on the phasor relationships among all harmonic voltages on the Point of Common Coupling. Then the useful history data of the harmonic voltages and harmonic currents were selected out by using the time segmentation method. After that, the regression coefficients were estimated by adopting an iteratively reweighted least squares algorithm. Finally, the harmonic impact index factor was calculated based on the regression coefficients and then the individual harmonic contribution of multiple harmonic sources was obtained. The proposed M-estimation robust regression method weakens the bad effect of the singular data on coefficient estimation, so it has higher estimation accuracy than the traditional least square method. Both simulation and case study results both verify the validity of the proposed method and its superiority over the least square method.
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.154