检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, National Institute of Technology,Kurukshetra, Haryana 136119, India
出 处:《Applied Mathematics and Mechanics(English Edition)》2012年第11期1441-1452,共12页应用数学和力学(英文版)
摘 要:The prime objective of the present study is to examine the effect of tempera- ture dependent viscosity/z(T) on the revolving axi-symmetric laminar boundary layer flow of an incompressible, electrically non-conducting ferrofiuid in the presence of a stationary plate subjected to a magnetic field and maintained at a uniform temperature. To serve this purpose, the non-linear coupled partial differential equations are firstly converted into the ordinary differential equations using well-known similarity transformations. The popular finite difference method is employed to discretize the non-linear coupled differ- ential equations. These discretized equations are then solved using the Newton method in MATLAB, for which an initial guess is made with the help of the Flex PDE Solver. Along with the velocity profiles, the effects of temperature dependent viscosity are also examined on the skin friction, the heat transfer, and the boundary layer displacement thickness. The obtained results are presented numerically as well as graphically.The prime objective of the present study is to examine the effect of tempera- ture dependent viscosity/z(T) on the revolving axi-symmetric laminar boundary layer flow of an incompressible, electrically non-conducting ferrofiuid in the presence of a stationary plate subjected to a magnetic field and maintained at a uniform temperature. To serve this purpose, the non-linear coupled partial differential equations are firstly converted into the ordinary differential equations using well-known similarity transformations. The popular finite difference method is employed to discretize the non-linear coupled differ- ential equations. These discretized equations are then solved using the Newton method in MATLAB, for which an initial guess is made with the help of the Flex PDE Solver. Along with the velocity profiles, the effects of temperature dependent viscosity are also examined on the skin friction, the heat transfer, and the boundary layer displacement thickness. The obtained results are presented numerically as well as graphically.
关 键 词:FERROFLUID temperature dependent viscosity boundary layer axi-symmetry magnetic field
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3