检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴涛[1] 潘卫三[1] 陈济民[1] 张汝华[1]
机构地区:[1]沈阳药科大学药剂教研室,辽宁沈阳110015
出 处:《药学学报》2000年第8期617-621,共5页Acta Pharmaceutica Sinica
摘 要:目的 将多目标同步优化技术应用于药物剂型的处方筛选中。方法 通过硫酸沙丁胺醇渗透泵型控释片的处方设计 ,将两种同步优化技术 :反应曲面法 (responsesurfacemethod ,RSM )与人工神经网络 (artificialneuralnetwork ,ANN)应用于药物剂型的优化筛选过程中 ,并将两种方法进行比较。结果 两种方法筛选的最优处方结果较为接近 ,但ANN的预测结果误差较小。结论 在处理多目标同步优化问题上 ,人工神经网络技术是值得推广应用的一种新型的处方优化筛选技术。AIM To apply simultaneous optimization technique in pharmaceutical dosage form design. METHODS By sieving the optimal formulation of salbutamol sulfate osmotic pump tablets, two simultaneous optimization techniques: response surface method (RSM) and artificial neural networks (RSM) were employed and their generalization ability was compared. RESULTS The optimal formulations proposed by the two methods were alike, but the results estimated by ANN showed a smaller error. CONCLUSION In the comprehensive experimental design, ANN and RSM have almost the same estimate ability. The ANN is useful in solving optimization problems and should be widely applied in formulation design.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3