检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微计算机信息》2012年第10期380-382,405,共4页Control & Automation
摘 要:微粒群算法(PSO)是一种新颖的群智能仿生进化优化算法,它简单、可控性强、易实现且具有很强的优化能力。本文首次将PSO算法引入时域划分领域,给出了一种基于PSO的时域划分优化算法PSOTP,用于粗粒度可重构系统任务编译过程中的时域划分优化。PSOTP算法运用数据流图(DFG)节点的序列作为微粒的位置,微粒中节点位置改变后两个序列的差分作为速度,以任务划分后的子模块数、数据通信量和可重构计算资源的面积利用率作为优化目标,是一种基于权重的多目标优化算法。实验表明,PSOTP算法在划分结果的性能上明显优于传统的ASAP、ALAP和表调度算法以及基于权重的表调度(Priority-List,PL)算法,同时与基于模拟退火遗传算法SAGA的时域划分算相比,可以用更少的迭代次数取得相当的优化效果,运算速度也更快。Particle Swarm Optimization (PSO) is a new optimization algorithm based on Group Intelligence of bionic evolution. It is easy and controllable, and has a strong ability in continuous space optimization. A novel temporal partitioning algorithm based on PSO is proposed in this paper, to solve the optimization problem in temporal partitioning of Reconfigurable System REmus. It consid- ers three main factors in partitioning: Sub-module Numbers, Communication Cost and Area Efficiency. Simulation Results show that this new method significantly increased the performance of temporal partitioning on REmus system.
分 类 号:TP319[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.234.246