检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周海俊[1,2] 朱亚峰[1] 杨夏[1] 孙利民[2]
机构地区:[1]深圳大学土木工程学院,广东深圳518060 [2]同济大学土木工程防灾国家重点实验室,上海200092
出 处:《振动工程学报》2012年第5期522-526,共5页Journal of Vibration Engineering
基 金:国家自然科学基金资助项目(51108269);土木工程防灾国家重点实验室开放课题基金资助项目(SLDRCE-08-MB-03);深圳市基础研究资助计划(JC201005280580A)
摘 要:将拉索简化为一根张紧弦,并将辅助索对拉索的刚度贡献简化为一根弹簧所提供的刚度,基于拉索-弹簧系统的动力学方程,采用分离变量法得到了拉索-弹簧系统的特征方程。研究了当弹簧刚度取极限值时特征值(振动频率)的极限解,由此确定了特征值的存在范围。当弹簧靠近锚固端时,由一阶泰勒展开得到了特征值的迭代解和近似解。分析了弹簧刚度和安装位置对拉索振动频率的影响,研究了针对提高低阶模态振动频率时弹簧的优化设置位置。研究结果为进一步研究辅助索减振设计问题提供基础理论依据,对辅助索减振设计也有一定的参考价值。Cable vibration and its mitigation are major concern for cable-stayed bridges. The taut cable can be simplified as a tight string, and the stiffness contribution of the secondary cable as that of a spring. This paper tries to investigate the stiffness contribution effect of secondary cable to the stay cable by studying the vibration of cable-spring system. Based on dynamic equation of the taut cable with a spring, the characteristic equation was derived by separation of variables. In the case of ultimate spring stiffness, the limit solutions of eigenvalue were investigated and its existed range was determined too. The iterative solution and asymptotic one of the eigenvalue according to first order Taylor expansion were derived when spring was located near to cable anchorage. Parameter studies were conducted, influences of the stiffness of spring and its location on eigenvalues were analyzed, and further recommendation for optimization of spring location to improve first few modal frequencies of cable vibration was given. The studied results provide a theoretical base for further investigating the design of secondary cables for vibration reduction.
分 类 号:U448.27[建筑科学—桥梁与隧道工程] TU311.3[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117