检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北工程大学信息与电气工程学院,河北邯郸056038
出 处:《河北工程大学学报(自然科学版)》2012年第3期103-108,共6页Journal of Hebei University of Engineering:Natural Science Edition
基 金:河北省科技计划基金项目(12213511D)
摘 要:针对元搜索引擎中返回大量重复冗余信息导致结果显示代理负担加大、系统查准率降低的缺陷,结合Agent技术建立基于多Agent的元搜索引擎系统模型,从成员Agent的爬行能力值、检索文档与查询主题的相关度和查询响应时间三个方面综合衡量成员搜索引擎对于查询的重要度,并按降序排序,优先选择重要度最佳的若干成员搜索引擎进行智能调度和智能结果合成。实验结果表明,与传统元搜索引擎相比,这种基于奖励机制的智能元搜索引擎提高了检索效率和查询性能。To settle the defects that the repetitive and redundant information returned by meta search engine leads to increase the burden of result display agent and reduce the precision, a meta search en- gine system model based on multi -agent is brought forward. The importance degree of member search engines to a particular query comprehensively is measured, in the aspects of member Agent's crawling capability, the relevance between retrieve documents and certain query, and response time during query. Then the importance degrees of member search engines are ordered by descend, so as to select several member search engines with higher importance degree to dispatch and merge. It has proved through the experimental comparison that compared to the traditional meta search engine, the intelligent meta search engine based on reward mechanism improves the retrieval efficiency and query performance to a certain extent.
关 键 词:奖励机制 元搜索引擎 智能代理 成员引擎调度策略 结果合成策略
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68