Molecular Evolution of the TACl Gene from Rice(Oryza sativa L.)  被引量:16

Molecular Evolution of the TACl Gene from Rice(Oryza sativa L.)

在线阅读下载全文

作  者:Jiahuan Jiang Lubin Tan Zuofeng Zhu Yongcai Fu Fengxia Liu Hongwei Cai Chuanqing Sun 

机构地区:[1]State Key Laboratory of Plant Physiology and Biochemistry,National Centre for Evaluation of Agricultural Wild Plants(Rice),Department of Plant Genetics and Breeding,China Agricultural University Beijing 100193,China [2]Rice Research Institute,Fujian Academy of Agricultural Science,Fuzhou 350018,China

出  处:《Journal of Genetics and Genomics》2012年第10期551-560,共10页遗传学报(英文版)

基  金:supported by the National Basic Research Program of China(Grant No.2011CB100201);the National Natural Science Foundation(Grant No.30930057);the Chang Jiang Scholars Program

摘  要:Tiller angle is a key feature of the architecture of cultivated rice (Oryza sativa), since it determines planting density and influences rice yield. Our previous work identified Tiller Angle Control 1 (TACI) as a major quantitative trait locus that controls rice filler angle. To further clarify the evolutionary characterization of the TAC1 gene, we compared a TACl-containing 3164-bp genomic region among 113 cultivated varieties and 48 accessions of wild rice, including 43 accessions of O. rufipogon and five accessions of O. nivara. Only one single nucleotide polymorphism (SNP), a synonymous substitution, was detected in TAC1 coding regions of the cultivated rice varieties, whereas one synonymous and one nonsynonymous SNP were detected among the TAC1 coding regions of wild rice accessions. These data indicate that little natural mutation and modification in the TAC1 coding region occurred within the cultivated rice and its progenitor during evolution. Nucleotide diversities in the TAC1 gene regions of O. sativa and O. rufipogon of 0.00116 and 0.00112, respectively, further indicate that TAC1 has been highly conserved during the course of rice domestication. A functional nucleotide polymorphism (FNP) of TAC1 was only found in the japonica rice group. A neutrality test revealed strong selection, especially in the 3'-flanking region of the TAC1 coding region containing the FNP in the japonica rice group. However, no selection occurred in the indica and wild-rice groups. A phylogenetic tree derived from TAC1 sequence analysis suggests that the indica and japonica subspecies arose indepen- dently during the domestication of wild rice.Tiller angle is a key feature of the architecture of cultivated rice (Oryza sativa), since it determines planting density and influences rice yield. Our previous work identified Tiller Angle Control 1 (TACI) as a major quantitative trait locus that controls rice filler angle. To further clarify the evolutionary characterization of the TAC1 gene, we compared a TACl-containing 3164-bp genomic region among 113 cultivated varieties and 48 accessions of wild rice, including 43 accessions of O. rufipogon and five accessions of O. nivara. Only one single nucleotide polymorphism (SNP), a synonymous substitution, was detected in TAC1 coding regions of the cultivated rice varieties, whereas one synonymous and one nonsynonymous SNP were detected among the TAC1 coding regions of wild rice accessions. These data indicate that little natural mutation and modification in the TAC1 coding region occurred within the cultivated rice and its progenitor during evolution. Nucleotide diversities in the TAC1 gene regions of O. sativa and O. rufipogon of 0.00116 and 0.00112, respectively, further indicate that TAC1 has been highly conserved during the course of rice domestication. A functional nucleotide polymorphism (FNP) of TAC1 was only found in the japonica rice group. A neutrality test revealed strong selection, especially in the 3'-flanking region of the TAC1 coding region containing the FNP in the japonica rice group. However, no selection occurred in the indica and wild-rice groups. A phylogenetic tree derived from TAC1 sequence analysis suggests that the indica and japonica subspecies arose indepen- dently during the domestication of wild rice.

关 键 词:DIVERSITY Evolution RICE SEQUENCE TAC1 

分 类 号:Q111[生物学—普通生物学] S511[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象